## WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 4th Semester Examination, 2022

## MTMHGEC04T/MTMGCOR04T-MATHEMATICS (GE4/DSC4)

Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

## Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:
(a) In $\mathbb{Z}_{14}$, find the smallest positive integer $n$ such that $n[6]=[0]$.2
(b) Let $(G, *)$ be a group. If every element of $G$ has its own inverse then prove that $G$ is commutative.
(c) Let $H$ be a subgroup of a group $G$. Show that for all $a \in G, a H=H$ if and only if $a \in H$.
(d) Check whether the relation $\rho$ defined by $x \rho y$ if and only if $|x|=|y|$, is an equivalence relation or not on the set of integers $\mathbb{Z}$. Justify your answer.
(e) Show that the alternative group $A_{3}$ is a normal subgroup of $S_{3}$.
(f) Show that every cyclic group is abelien.
(g) Show that the ring of matrices $\left\{\left(\begin{array}{cc}2 a & 0 \\ 0 & 2 b\end{array}\right): a, b \in \mathbb{Z}\right\}$ contains divisors of zero and does not contain the unity.
(h) Let $A$ and $B$ be two ideals of a ring $R$. Is $A \cup B$ an ideal of $R$ ? Justify.
2. (a) A relation $\rho$ on the set $\mathbb{N}$ is given by $\rho=\{(a, b) \in \mathbb{N} \times \mathbb{N}: a$ is a divisor of $b\}$. Examine if $\rho$ is (i) reflexive, (ii) symmetric, (iii) transitive.
(b) If $G$ is a group such that $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$; then show that $G$ is commutative.
3. (a) Let $A=\{1,2,3\}$. List all one-one functions from $A$ onto $A$.
(b) Let $G$ be a commutative group. Show that the set $H$ of all elements of finite order is a subgroup of $G$.
4. (a) Let $H$ be a subgroup of a group $G$. Show that the relation $\rho$ defined on $G$ by " $a \rho b$ if and only if $a^{-1} b \in H$ " for $a, b \in G$ is an equivalence relation.
(b) Prove that the order of every subgroup of a finite group $G$ is a divisor of the orde of $G$.
5. (a) Prove that every group of order less than 6 is commutative.
(b) Let $(G, \circ)$ be a cyclic group generated by $a$. Then prove that $a^{-1}$ is also a generator.
6. (a) Show that the intersection of two normal subgroups of a group $G$ is normal in $G$.
(b) Show that if $H$ be a subgroup of a commutative group $G$ then the quotient group
$G / H$ is commutative. Is the converse true? Justify.
7. (a) Prove that an infinite cyclic group has only two generators.
(b) In the rings $\mathbb{Z}_{8}$ and $\mathbb{Z}_{6}$, find the following elements:
(i) the units and
(ii) the zero divisors.
8. (a) Find all ideals of $\mathbb{Z}$.
(b) Let $R$ be a commutative ring with 1 . Then prove that $R$ is a field if and only if $R$ has no non-zero proper ideals.
9. (a) (i) Let $S$ be a set with $n$ elements. How many binary operations can be defined on $S$ ? Justify.
(ii) Let $A$ and $B$ be two sets with $|A|=5$ and $|B|=2$. How many surjective functions defined from $A$ onto $B$ ? Justify.
(b) Let $G=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a(\neq 0) \in \mathbb{R}\right\}$. Show that $G$ forms a group w.r.t. matrix multiplication.
N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.


## WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 4th Semester Examination, 2021

## MTMHGEC04T/MTMGCOR04T-MATHEMATICS (GE4/DSC4)

Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

## Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:
(a) Show that the set of cube roots of unity forms a group with respect to multiplication.
(b) In a group $(G, \circ)$ prove that for all $a, b \in G,(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.
(c) When a relation $\rho$ defined on a nonempty set $S$ is said to be an equivalence relation?
(d) Prove that in a commutative group $G$, the set $H=\left\{x \in G: x=x^{-1}\right\}$ forms a subgroup of $G$.
(e) Show that the group $\left(Z_{4},+\right)$ is a cyclic group. Find it's generators.
(f) Let $R$ be a ring with 1 . Show that the subset $T=\{n 1: n \in \mathbb{Z}\}$ is a subring of $R$.
(g) Show that the ring $\left(Z_{5},+,-\right)$ is an integral domain.
(h) Determine whether the permutation $f$ on the group $S_{5}$ is odd or even where

$$
f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{array}\right)
$$

(i) Define index of a subgroup $H$ of a group $G$. If $G=S_{3}$ and $H=A_{3}$, then find the value of $[G: H]$.
2. (a) Let a relation $R$ defined on the set $\mathbb{Z}$ by " $a R b$ if and only if $a-b$ is divisible by $5 "$ for all $a, b \in \mathbb{Z}$. Show that $R$ is an equivalence relation.
(b) Which of the following mathematical systems is / are group(s)?
(i) $(\mathbb{N}, *)$, where $a * b=a$ for all $a, b \in \mathbb{N}$.
(ii) ( $\mathbb{Z}, *$ ), where $a * b=a-b$ for all $a, b \in \mathbb{Z}$.
3. (a) Let the permutations $f$ and $g$ are the elements of $S_{5}$ where
(b) Let $f: Z \rightarrow Z$ is defined by $f(n)=n^{2}, n \in Z$ and $g: Z \rightarrow Z$ is defined by $g(n)=2 n, n \in Z$. Find the composition of the functions $f \circ g$ and $g \circ f$.
4. (a) Verify the statement is true or false: In ring $R$ if $(a+b)^{2}=a^{2}+2 a b+b^{2}$ for all $a, b \in R$, then $R$ is a commutative ring.
(b) (i) Show that the set $S=\left\{\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\right\}, x \neq 0$ is a subgroup of the group of all $2 \times 2$ order non-singular real matrices.
(ii) Let $(G, \circ)$ be a commutative group and $H=\left\{a^{2}: a \in G\right\}$, prove that $H$ is sub-group of $G$.
5. (a) Prove that every subgroup of a cyclic group is cyclic.
(b) Let $G$ be a group of prime order. Then prove that $G$ is cyclic.
6. (a) Find all right cosets of the subgroup $6 \mathbb{Z}$ in the group $(\mathbb{Z},+)$.
(b) Let $G$ be a group such that every cyclic subgroup of $G$ is a normal subgroup of $G$. Prove that every subgroup of $G$ is a normal subgroup of $G$.
7. (a) Let $H$ be the set of all real matrices
$\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): \operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=1\right\}$. Prove that $H$ is a subset of $G L(2, R)$.
(b) Find all cyclic subgroups of the group $(S, \cdot)$, where $S=\{1, i,-1,-i\}$.
8. (a) Examine if the ring of matrices $\left\{\left(\begin{array}{cc}a & b \\ 2 b & a\end{array}\right): a, b \in \boldsymbol{R}\right\}$ is a field.
(b) Prove that a finite integral domain is a field.
9. (a) Show that the ring of matrices $\left\{\left(\begin{array}{cc}2 a & 0 \\ 0 & 2 b\end{array}\right): a, b \in \mathbf{Z}\right\}$ contains divisors of zeros and does not contain the unity.
(b) Prove that the ring $\left(Z_{n},+, \cdot\right)$ is an integral domain if and only if $n$ is prime.
10.(a) Show that $T=\{[0],[5]\}$ is a subring of the ring $\mathbb{Z}_{10}$.
(b) Let $I$ and $J$ be ideals of a ring $R$. Prove that $I+J$ is an ideal of $R$.

[^0]

## WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 4th Semester Supplementary Examination, 2021

## MTMHGEC04T/MTMGCOR04T-MATHEMATICS (GE4/DSC4)

Time Allotted: 2 Hours

> The figures in the margin indicate full marks.
> Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

## Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:
$2 \times 5=10$
(a) Write down the power set of the set $\{x, y, z\}$.
(b) Two mappings $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x^{2} ; g(x)=2 x+3$ for all $x \in R$. Find the mapping $f \circ g$.
(c) Let $f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2\end{array}\right)$ and $g=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$ be two permutations. Then find $g f$.
(d) Prove that $(Z, \cdot)$ is not a group, where Z is the set of integers.
(e) State Lagrange's theorem.
(f) Find the generators of the cyclic group $\{\mathbb{Z},+\}$.
(g) Prove that under the matrix addition and multiplication, the set $M=\left\{\left(\begin{array}{ll}\alpha & \alpha \\ 0 & \alpha\end{array}\right): \alpha \in Z\right\}$ is not a ring.
(h) Prove that if every element of a group ( $G, \circ$ ) be its own inverse then it is an abelian group.
2. (a) Show that a group $(G, *)$ is commutative if and only if $(a * b)^{2}=a^{2} * b^{2}$ for all $a \in G$ [where $\left.x^{2}=x * x\right]$.
(b) Let $\left(G, \circ\right.$ ) be a group. Prove that $(a * b)^{-1}=a^{-1} * b^{-1}$ for all $a, b \in G$.
3. (a) Let $(G, \circ)$ be a group. A non-empty subset $H$ of $G$ forms a subgroup of $(G, \circ)$ if and only if $a \in H, b \in H \Rightarrow a \circ b^{-1} \in H$.
(b) Let $S=\left\{1, \omega, \omega^{2}\right\}$, where $\omega$ is an imaginary cube root of 1 . Prove that $S$ is an abelian group with respect to multiplication.
4. (a) Show that the set of even integers forms a commutative ring with respect to the usual addition and multiplication of integers.
(b) If a ring $(R,+, \cdot), a^{2}=a$ for all $a \in R$; prove that $a+a=0$ for all $a \in R$; ( 0 is the zero element of $R$ ).
5. (a) In a ring $(R,+, \cdot)$ show that $(-a) \cdot(-b)=a \cdot b$ for all $a, b \in R$.
(b) Let $M=\left\{\left(\begin{array}{cc}2 a & 0 \\ 0 & 2 b\end{array}\right): a, b \in Z\right\}$, then show that $M$ is a ring with respect to matrix addition and multiplication.
6. (a) Prove that if $G$ is commutative, then every subgroup of $G$ is normal.
(b) Let $G$ be a group and $H$ be a subgroup of $G$. If $h \in H$ then prove that $h H=H$.
7. (a) Prove that every proper subgroup of a group of order 6 is cyclic.
(b) The intersection of two normal subgroups of a group $G$ is a normal subgroup of $G$.
8. (a) Show that $H=\left\{\left(\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right): a, b, c, d \in Z\right\}$ forms a ring with unity.
(b) Prove that a finite integral domain is a field.
9. (a) If $f$ is real function defined by $f(x)=\frac{x-1}{x+1}$, then prove that $f(2 x)=\frac{3 f(x)+1}{f(x)+3}$.
(b) If $f(x)=x^{2}$, then find the value of $\frac{f(1.1)-f(1)}{1.1-1}$.
(c) Prove that a group ( $G, \circ$ ) contains only one identity element.
N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.


[^0]:    N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

